MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. ACI-ASTM CF3M Steel

EN AC-43100 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF3M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is ACI-ASTM CF3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 94
150
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 1.1 to 2.5
55
Fatigue Strength, MPa 68 to 76
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 180 to 270
520
Tensile Strength: Yield (Proof), MPa 97 to 230
260

Thermal Properties

Latent Heat of Fusion, J/g 540
300
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
16
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.8
3.8
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1070
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
240
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 20 to 29
18
Strength to Weight: Bending, points 28 to 36
18
Thermal Diffusivity, mm2/s 60
4.3
Thermal Shock Resistance, points 8.6 to 12
12

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 21
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.55
59.9 to 72
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.050
9.0 to 13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 11
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0