MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. AWS E410

EN AC-43100 aluminum belongs to the aluminum alloys classification, while AWS E410 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is AWS E410.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.1 to 2.5
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 180 to 270
580
Tensile Strength: Yield (Proof), MPa 97 to 230
440

Thermal Properties

Latent Heat of Fusion, J/g 540
270
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 590
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
28
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1070
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
120
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
500
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 20 to 29
21
Strength to Weight: Bending, points 28 to 36
20
Thermal Diffusivity, mm2/s 60
7.5
Thermal Shock Resistance, points 8.6 to 12
16

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
11 to 13.5
Copper (Cu), % 0 to 0.1
0 to 0.75
Iron (Fe), % 0 to 0.55
82.2 to 89
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.050
0 to 0.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 11
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0