MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. EN 1.1132 Steel

EN AC-43100 aluminum belongs to the aluminum alloys classification, while EN 1.1132 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is EN 1.1132 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 94
110 to 140
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.1 to 2.5
12 to 24
Fatigue Strength, MPa 68 to 76
180 to 280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 180 to 270
370 to 490
Tensile Strength: Yield (Proof), MPa 97 to 230
240 to 400

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
51
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.8
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1070
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
38 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
160 to 430
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 20 to 29
13 to 17
Strength to Weight: Bending, points 28 to 36
15 to 18
Thermal Diffusivity, mm2/s 60
14
Thermal Shock Resistance, points 8.6 to 12
12 to 16

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0
Carbon (C), % 0
0.13 to 0.17
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.55
98.6 to 99.57
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0.3 to 0.6
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 9.0 to 11
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0