MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. EN 1.4823 Stainless Steel

EN AC-43100 aluminum belongs to the aluminum alloys classification, while EN 1.4823 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is EN 1.4823 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 1.1 to 2.5
3.4
Fatigue Strength, MPa 68 to 76
130
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 180 to 270
620
Tensile Strength: Yield (Proof), MPa 97 to 230
290

Thermal Properties

Latent Heat of Fusion, J/g 540
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1400
Melting Onset (Solidus), °C 590
1360
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.6
7.6
Embodied Carbon, kg CO2/kg material 7.8
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1070
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
17
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
200
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 54
26
Strength to Weight: Axial, points 20 to 29
23
Strength to Weight: Bending, points 28 to 36
21
Thermal Diffusivity, mm2/s 60
4.5
Thermal Shock Resistance, points 8.6 to 12
17

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.55
60.9 to 70.7
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
3.0 to 6.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 11
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0