MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. EN 1.4869 Casting Alloy

EN AC-43100 aluminum belongs to the aluminum alloys classification, while EN 1.4869 casting alloy belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is EN 1.4869 casting alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 1.1 to 2.5
5.7
Fatigue Strength, MPa 68 to 76
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 180 to 270
540
Tensile Strength: Yield (Proof), MPa 97 to 230
310

Thermal Properties

Latent Heat of Fusion, J/g 540
330
Maximum Temperature: Mechanical, °C 170
1200
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 590
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 140
10
Thermal Expansion, µm/m-K 22
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 7.8
7.7
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1070
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
26
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
230
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 20 to 29
18
Strength to Weight: Bending, points 28 to 36
17
Thermal Diffusivity, mm2/s 60
2.6
Thermal Shock Resistance, points 8.6 to 12
14

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0
Carbon (C), % 0
0.45 to 0.55
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0
14 to 16
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.55
11.4 to 23.6
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0 to 1.0
Nickel (Ni), % 0 to 0.050
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 11
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0