MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. EN 1.4874 Stainless Steel

EN AC-43100 aluminum belongs to the aluminum alloys classification, while EN 1.4874 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is EN 1.4874 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 94
140
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 1.1 to 2.5
6.7
Fatigue Strength, MPa 68 to 76
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 180 to 270
480
Tensile Strength: Yield (Proof), MPa 97 to 230
360

Thermal Properties

Latent Heat of Fusion, J/g 540
300
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 590
1400
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 140
13
Thermal Expansion, µm/m-K 22
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 7.8
7.6
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1070
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
29
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
310
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 20 to 29
16
Strength to Weight: Bending, points 28 to 36
16
Thermal Diffusivity, mm2/s 60
3.3
Thermal Shock Resistance, points 8.6 to 12
11

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0
Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0
19 to 22
Cobalt (Co), % 0
18.5 to 22
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.55
23 to 38.9
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0 to 0.050
18 to 22
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 11
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0