MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. EN 1.4877 Stainless Steel

EN AC-43100 aluminum belongs to the aluminum alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 94
190
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 1.1 to 2.5
36
Fatigue Strength, MPa 68 to 76
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 180 to 270
630
Tensile Strength: Yield (Proof), MPa 97 to 230
200

Thermal Properties

Latent Heat of Fusion, J/g 540
310
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 600
1400
Melting Onset (Solidus), °C 590
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 7.8
6.2
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1070
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
180
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
100
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 20 to 29
22
Strength to Weight: Bending, points 28 to 36
20
Thermal Diffusivity, mm2/s 60
3.2
Thermal Shock Resistance, points 8.6 to 12
15

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.55
36.4 to 42.3
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0 to 1.0
Nickel (Ni), % 0 to 0.050
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 9.0 to 11
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0