MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. Nickel 725

EN AC-43100 aluminum belongs to the aluminum alloys classification, while nickel 725 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is nickel 725.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 1.1 to 2.5
34
Fatigue Strength, MPa 68 to 76
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 180 to 270
860
Tensile Strength: Yield (Proof), MPa 97 to 230
350

Thermal Properties

Latent Heat of Fusion, J/g 540
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 600
1340
Melting Onset (Solidus), °C 590
1270
Specific Heat Capacity, J/kg-K 900
440
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 7.8
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1070
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
240
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
300
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 20 to 29
28
Strength to Weight: Bending, points 28 to 36
24
Thermal Shock Resistance, points 8.6 to 12
23

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.55
2.3 to 15.3
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0 to 0.35
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0 to 0.050
55 to 59
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 9.0 to 11
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
1.0 to 1.7
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0