MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. SAE-AISI M52 Steel

EN AC-43100 aluminum belongs to the aluminum alloys classification, while SAE-AISI M52 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is SAE-AISI M52 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 180 to 270
710 to 2280

Thermal Properties

Latent Heat of Fusion, J/g 540
260
Melting Completion (Liquidus), °C 600
1510
Melting Onset (Solidus), °C 590
1470
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 140
31
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 130
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.8
7.5
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1070
89

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 20 to 29
25 to 80
Strength to Weight: Bending, points 28 to 36
22 to 49
Thermal Diffusivity, mm2/s 60
8.4
Thermal Shock Resistance, points 8.6 to 12
21 to 67

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0
Carbon (C), % 0
0.85 to 1.0
Chromium (Cr), % 0
3.5 to 4.3
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.55
84.4 to 88.9
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0.15 to 0.45
Molybdenum (Mo), % 0
4.0 to 4.9
Nickel (Ni), % 0 to 0.050
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 9.0 to 11
0.2 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
0.75 to 1.5
Vanadium (V), % 0
1.7 to 2.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0