MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. Type 4 Magnetic Alloy

EN AC-43100 aluminum belongs to the aluminum alloys classification, while Type 4 magnetic alloy belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is Type 4 magnetic alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.1 to 2.5
2.0 to 40
Fatigue Strength, MPa 68 to 76
220 to 400
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 180 to 270
620 to 1100
Tensile Strength: Yield (Proof), MPa 97 to 230
270 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 540
290
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 900
440
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.6
8.8
Embodied Carbon, kg CO2/kg material 7.8
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1070
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
22 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
190 to 2840
Stiffness to Weight: Axial, points 15
12
Stiffness to Weight: Bending, points 54
22
Strength to Weight: Axial, points 20 to 29
19 to 35
Strength to Weight: Bending, points 28 to 36
18 to 27
Thermal Shock Resistance, points 8.6 to 12
21 to 37

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.3
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.55
9.5 to 17.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0 to 0.8
Molybdenum (Mo), % 0
3.5 to 6.0
Nickel (Ni), % 0 to 0.050
79 to 82
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 9.0 to 11
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0