MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. C82700 Copper

EN AC-43100 aluminum belongs to the aluminum alloys classification, while C82700 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 1.1 to 2.5
1.8
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
46
Tensile Strength: Ultimate (UTS), MPa 180 to 270
1200
Tensile Strength: Yield (Proof), MPa 97 to 230
1020

Thermal Properties

Latent Heat of Fusion, J/g 540
240
Maximum Temperature: Mechanical, °C 170
300
Melting Completion (Liquidus), °C 600
950
Melting Onset (Solidus), °C 590
860
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
20
Electrical Conductivity: Equal Weight (Specific), % IACS 130
21

Otherwise Unclassified Properties

Density, g/cm3 2.6
8.7
Embodied Carbon, kg CO2/kg material 7.8
12
Embodied Energy, MJ/kg 150
180
Embodied Water, L/kg 1070
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
21
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
4260
Stiffness to Weight: Axial, points 15
7.8
Stiffness to Weight: Bending, points 54
19
Strength to Weight: Axial, points 20 to 29
38
Strength to Weight: Bending, points 28 to 36
29
Thermal Diffusivity, mm2/s 60
39
Thermal Shock Resistance, points 8.6 to 12
41

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Chromium (Cr), % 0
0 to 0.090
Copper (Cu), % 0 to 0.1
94.6 to 96.7
Iron (Fe), % 0 to 0.55
0 to 0.25
Lead (Pb), % 0 to 0.050
0 to 0.020
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0
Nickel (Ni), % 0 to 0.050
1.0 to 1.5
Silicon (Si), % 9.0 to 11
0 to 0.15
Tin (Sn), % 0 to 0.050
0 to 0.1
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.5