MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. C90900 Bronze

EN AC-43100 aluminum belongs to the aluminum alloys classification, while C90900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is C90900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 94
90
Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 1.1 to 2.5
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 180 to 270
280
Tensile Strength: Yield (Proof), MPa 97 to 230
140

Thermal Properties

Latent Heat of Fusion, J/g 540
190
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 600
980
Melting Onset (Solidus), °C 590
820
Specific Heat Capacity, J/kg-K 900
360
Thermal Conductivity, W/m-K 140
65
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
11
Electrical Conductivity: Equal Weight (Specific), % IACS 130
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.6
8.7
Embodied Carbon, kg CO2/kg material 7.8
3.9
Embodied Energy, MJ/kg 150
64
Embodied Water, L/kg 1070
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
35
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
89
Stiffness to Weight: Axial, points 15
6.8
Stiffness to Weight: Bending, points 54
18
Strength to Weight: Axial, points 20 to 29
8.8
Strength to Weight: Bending, points 28 to 36
11
Thermal Diffusivity, mm2/s 60
21
Thermal Shock Resistance, points 8.6 to 12
10

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.1
86 to 89
Iron (Fe), % 0 to 0.55
0 to 0.15
Lead (Pb), % 0 to 0.050
0 to 0.25
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0
Nickel (Ni), % 0 to 0.050
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 9.0 to 11
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.050
12 to 14
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.6