MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. N10675 Nickel

EN AC-43100 aluminum belongs to the aluminum alloys classification, while N10675 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 1.1 to 2.5
47
Fatigue Strength, MPa 68 to 76
350
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
85
Tensile Strength: Ultimate (UTS), MPa 180 to 270
860
Tensile Strength: Yield (Proof), MPa 97 to 230
400

Thermal Properties

Latent Heat of Fusion, J/g 540
320
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.6
9.3
Embodied Carbon, kg CO2/kg material 7.8
16
Embodied Energy, MJ/kg 150
210
Embodied Water, L/kg 1070
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
330
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
350
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
22
Strength to Weight: Axial, points 20 to 29
26
Strength to Weight: Bending, points 28 to 36
22
Thermal Diffusivity, mm2/s 60
3.1
Thermal Shock Resistance, points 8.6 to 12
26

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.55
1.0 to 3.0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0 to 0.050
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 9.0 to 11
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0 to 0.15
0