MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. R30008 Cobalt

EN AC-43100 aluminum belongs to the aluminum alloys classification, while R30008 cobalt belongs to the cobalt alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is R30008 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 1.1 to 2.5
1.1 to 73
Fatigue Strength, MPa 68 to 76
320 to 530
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
83
Tensile Strength: Ultimate (UTS), MPa 180 to 270
950 to 1700
Tensile Strength: Yield (Proof), MPa 97 to 230
500 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 540
320
Melting Completion (Liquidus), °C 600
1400
Melting Onset (Solidus), °C 590
1330
Specific Heat Capacity, J/kg-K 900
450
Thermal Expansion, µm/m-K 22
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
95
Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 7.8
8.1
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1070
400

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
590 to 2720
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 20 to 29
31 to 56
Strength to Weight: Bending, points 28 to 36
25 to 37
Thermal Shock Resistance, points 8.6 to 12
25 to 44

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0
Boron (B), % 0
0 to 0.0010
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
18.5 to 21.5
Cobalt (Co), % 0
39 to 42
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.55
7.6 to 20
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
1.0 to 2.0
Molybdenum (Mo), % 0
6.5 to 7.5
Nickel (Ni), % 0 to 0.050
15 to 18
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 9.0 to 11
0 to 1.2
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0