MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. S35500 Stainless Steel

EN AC-43100 aluminum belongs to the aluminum alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 1.1 to 2.5
14
Fatigue Strength, MPa 68 to 76
690 to 730
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 180 to 270
1330 to 1490
Tensile Strength: Yield (Proof), MPa 97 to 230
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 540
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
16
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
3.5
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1070
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
3610 to 4100
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 20 to 29
47 to 53
Strength to Weight: Bending, points 28 to 36
34 to 37
Thermal Diffusivity, mm2/s 60
4.4
Thermal Shock Resistance, points 8.6 to 12
44 to 49

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
15 to 16
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.55
73.2 to 77.7
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0 to 0.050
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 11
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants