MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. 1080 Aluminum

Both EN AC-43200 aluminum and 1080 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is 1080 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
68
Elongation at Break, % 1.1
4.6 to 40
Fatigue Strength, MPa 67
21 to 48
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 190 to 260
72 to 130
Tensile Strength: Yield (Proof), MPa 97 to 220
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 590
640
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
230
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
61
Electrical Conductivity: Equal Weight (Specific), % IACS 120
200

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1070
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
4.7 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
2.1 to 100
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
50
Strength to Weight: Axial, points 20 to 28
7.4 to 14
Strength to Weight: Bending, points 28 to 35
14 to 22
Thermal Diffusivity, mm2/s 59
94
Thermal Shock Resistance, points 8.8 to 12
3.2 to 6.0

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
99.8 to 100
Copper (Cu), % 0 to 0.35
0 to 0.030
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.65
0 to 0.15
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
0 to 0.020
Manganese (Mn), % 0 to 0.55
0 to 0.020
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 9.0 to 11
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.35
0 to 0.030
Residuals, % 0
0 to 0.020