MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. 2218 Aluminum

Both EN AC-43200 aluminum and 2218 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is 2218 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 88
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 72
73
Elongation at Break, % 1.1
6.8 to 10
Fatigue Strength, MPa 67
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 190 to 260
330 to 430
Tensile Strength: Yield (Proof), MPa 97 to 220
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 540
390
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 590
510
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 140
140
Thermal Expansion, µm/m-K 22
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
37
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
27 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
450 to 650
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
45
Strength to Weight: Axial, points 20 to 28
30 to 39
Strength to Weight: Bending, points 28 to 35
34 to 41
Thermal Diffusivity, mm2/s 59
52
Thermal Shock Resistance, points 8.8 to 12
15 to 19

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
88.8 to 93.6
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.35
3.5 to 4.5
Iron (Fe), % 0 to 0.65
0 to 1.0
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
1.2 to 1.8
Manganese (Mn), % 0 to 0.55
0 to 0.2
Nickel (Ni), % 0 to 0.15
1.7 to 2.3
Silicon (Si), % 9.0 to 11
0 to 0.9
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.35
0 to 0.25
Residuals, % 0
0 to 0.15