MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. 364.0 Aluminum

Both EN AC-43200 aluminum and 364.0 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
72
Elongation at Break, % 1.1
7.5
Fatigue Strength, MPa 67
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 190 to 260
300
Tensile Strength: Yield (Proof), MPa 97 to 220
160

Thermal Properties

Latent Heat of Fusion, J/g 540
520
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 600
600
Melting Onset (Solidus), °C 590
560
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
30
Electrical Conductivity: Equal Weight (Specific), % IACS 120
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
2.6
Embodied Carbon, kg CO2/kg material 7.8
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
19
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
180
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 54
53
Strength to Weight: Axial, points 20 to 28
31
Strength to Weight: Bending, points 28 to 35
38
Thermal Diffusivity, mm2/s 59
51
Thermal Shock Resistance, points 8.8 to 12
14

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Chromium (Cr), % 0
0.25 to 0.5
Copper (Cu), % 0 to 0.35
0 to 0.2
Iron (Fe), % 0 to 0.65
0 to 1.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
0.2 to 0.4
Manganese (Mn), % 0 to 0.55
0 to 0.1
Nickel (Ni), % 0 to 0.15
0 to 0.15
Silicon (Si), % 9.0 to 11
7.5 to 9.5
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.35
0 to 0.15
Residuals, % 0
0 to 0.15