MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. 380.0 Aluminum

Both EN AC-43200 aluminum and 380.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 88
80
Elastic (Young's, Tensile) Modulus, GPa 72
74
Elongation at Break, % 1.1
3.0
Fatigue Strength, MPa 67
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 190 to 260
320
Tensile Strength: Yield (Proof), MPa 97 to 220
160

Thermal Properties

Latent Heat of Fusion, J/g 540
510
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
590
Melting Onset (Solidus), °C 590
540
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 140
100
Thermal Expansion, µm/m-K 22
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
27
Electrical Conductivity: Equal Weight (Specific), % IACS 120
83

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 7.8
7.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1070
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
48
Strength to Weight: Axial, points 20 to 28
31
Strength to Weight: Bending, points 28 to 35
36
Thermal Diffusivity, mm2/s 59
40
Thermal Shock Resistance, points 8.8 to 12
14

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
79.6 to 89.5
Copper (Cu), % 0 to 0.35
3.0 to 4.0
Iron (Fe), % 0 to 0.65
0 to 2.0
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
0 to 0.1
Manganese (Mn), % 0 to 0.55
0 to 0.5
Nickel (Ni), % 0 to 0.15
0 to 0.5
Silicon (Si), % 9.0 to 11
7.5 to 9.5
Tin (Sn), % 0
0 to 0.35
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.35
0 to 3.0
Residuals, % 0
0 to 0.5