MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. 5082 Aluminum

Both EN AC-43200 aluminum and 5082 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
67
Elongation at Break, % 1.1
1.1
Fatigue Strength, MPa 67
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 190 to 260
380 to 400
Tensile Strength: Yield (Proof), MPa 97 to 220
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 590
560
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
32
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
670 to 870
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
51
Strength to Weight: Axial, points 20 to 28
39 to 41
Strength to Weight: Bending, points 28 to 35
43 to 45
Thermal Diffusivity, mm2/s 59
54
Thermal Shock Resistance, points 8.8 to 12
17 to 18

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
93.5 to 96
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0 to 0.35
0 to 0.15
Iron (Fe), % 0 to 0.65
0 to 0.35
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
4.0 to 5.0
Manganese (Mn), % 0 to 0.55
0 to 0.15
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 9.0 to 11
0 to 0.2
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.35
0 to 0.25
Residuals, % 0
0 to 0.15