MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. 6018 Aluminum

Both EN AC-43200 aluminum and 6018 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 1.1
9.0 to 9.1
Fatigue Strength, MPa 67
85 to 89
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 190 to 260
290 to 300
Tensile Strength: Yield (Proof), MPa 97 to 220
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 590
570
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 140
170
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
44
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
360 to 380
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
48
Strength to Weight: Axial, points 20 to 28
28 to 29
Strength to Weight: Bending, points 28 to 35
34 to 35
Thermal Diffusivity, mm2/s 59
65
Thermal Shock Resistance, points 8.8 to 12
13

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.35
0.15 to 0.4
Iron (Fe), % 0 to 0.65
0 to 0.7
Lead (Pb), % 0 to 0.1
0.4 to 1.2
Magnesium (Mg), % 0.2 to 0.45
0.6 to 1.2
Manganese (Mn), % 0 to 0.55
0.3 to 0.8
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 9.0 to 11
0.5 to 1.2
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.35
0 to 0.3
Residuals, % 0
0 to 0.15

Comparable Variants