MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. 6110 Aluminum

Both EN AC-43200 aluminum and 6110 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is 6110 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 1.1
2.2
Fatigue Strength, MPa 67
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 190 to 260
500
Tensile Strength: Yield (Proof), MPa 97 to 220
500

Thermal Properties

Latent Heat of Fusion, J/g 540
410
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 590
600
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
170
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
42
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.8
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
11
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
1770
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
50
Strength to Weight: Axial, points 20 to 28
51
Strength to Weight: Bending, points 28 to 35
51
Thermal Diffusivity, mm2/s 59
67
Thermal Shock Resistance, points 8.8 to 12
22

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
94.4 to 98.4
Chromium (Cr), % 0
0.040 to 0.25
Copper (Cu), % 0 to 0.35
0.2 to 0.7
Iron (Fe), % 0 to 0.65
0 to 0.8
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
0.5 to 1.1
Manganese (Mn), % 0 to 0.55
0.2 to 0.7
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 9.0 to 11
0.7 to 1.5
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 0 to 0.35
0 to 0.3
Residuals, % 0
0 to 0.15