MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. 7010 Aluminum

Both EN AC-43200 aluminum and 7010 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is 7010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 1.1
3.9 to 6.8
Fatigue Strength, MPa 67
160 to 190
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 190 to 260
520 to 590
Tensile Strength: Yield (Proof), MPa 97 to 220
410 to 540

Thermal Properties

Latent Heat of Fusion, J/g 540
380
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 600
630
Melting Onset (Solidus), °C 590
480
Specific Heat Capacity, J/kg-K 900
860
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
40
Electrical Conductivity: Equal Weight (Specific), % IACS 120
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
3.0
Embodied Carbon, kg CO2/kg material 7.8
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
22 to 33
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
1230 to 2130
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
45
Strength to Weight: Axial, points 20 to 28
47 to 54
Strength to Weight: Bending, points 28 to 35
47 to 52
Thermal Diffusivity, mm2/s 59
58
Thermal Shock Resistance, points 8.8 to 12
22 to 26

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
87.9 to 90.6
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 0 to 0.35
1.5 to 2.0
Iron (Fe), % 0 to 0.65
0 to 0.15
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
2.1 to 2.6
Manganese (Mn), % 0 to 0.55
0 to 0.1
Nickel (Ni), % 0 to 0.15
0 to 0.050
Silicon (Si), % 9.0 to 11
0 to 0.12
Titanium (Ti), % 0 to 0.2
0 to 0.060
Zinc (Zn), % 0 to 0.35
5.7 to 6.7
Zirconium (Zr), % 0
0.1 to 0.16
Residuals, % 0
0 to 0.15

Comparable Variants