MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. 7050 Aluminum

Both EN AC-43200 aluminum and 7050 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is 7050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 1.1
2.2 to 12
Fatigue Strength, MPa 67
130 to 210
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 190 to 260
490 to 570
Tensile Strength: Yield (Proof), MPa 97 to 220
390 to 500

Thermal Properties

Latent Heat of Fusion, J/g 540
370
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 600
630
Melting Onset (Solidus), °C 590
490
Specific Heat Capacity, J/kg-K 900
860
Thermal Conductivity, W/m-K 140
140
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
35
Electrical Conductivity: Equal Weight (Specific), % IACS 120
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
10 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
1110 to 1760
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
45
Strength to Weight: Axial, points 20 to 28
45 to 51
Strength to Weight: Bending, points 28 to 35
45 to 50
Thermal Diffusivity, mm2/s 59
54
Thermal Shock Resistance, points 8.8 to 12
21 to 25

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
87.3 to 92.1
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 0 to 0.35
2.0 to 2.6
Iron (Fe), % 0 to 0.65
0 to 0.15
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
1.9 to 2.6
Manganese (Mn), % 0 to 0.55
0 to 0.1
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 9.0 to 11
0 to 0.12
Titanium (Ti), % 0 to 0.2
0 to 0.060
Zinc (Zn), % 0 to 0.35
5.7 to 6.7
Zirconium (Zr), % 0
0.080 to 0.15
Residuals, % 0
0 to 0.15