MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. ASTM Grade HL Steel

EN AC-43200 aluminum belongs to the aluminum alloys classification, while ASTM grade HL steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is ASTM grade HL steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 88
150
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.1
11
Fatigue Strength, MPa 67
150
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 190 to 260
500
Tensile Strength: Yield (Proof), MPa 97 to 220
270

Thermal Properties

Latent Heat of Fusion, J/g 540
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1390
Melting Onset (Solidus), °C 590
1340
Specific Heat Capacity, J/kg-K 900
490
Thermal Expansion, µm/m-K 22
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
4.5
Embodied Energy, MJ/kg 150
65
Embodied Water, L/kg 1070
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
48
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 20 to 28
18
Strength to Weight: Bending, points 28 to 35
18
Thermal Shock Resistance, points 8.8 to 12
11

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
0
Carbon (C), % 0
0.2 to 0.6
Chromium (Cr), % 0
28 to 32
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 0 to 0.65
40.8 to 53.8
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.15
18 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 11
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0