MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. EN 1.4607 Stainless Steel

EN AC-43200 aluminum belongs to the aluminum alloys classification, while EN 1.4607 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is EN 1.4607 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.1
21
Fatigue Strength, MPa 67
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 190 to 260
530
Tensile Strength: Yield (Proof), MPa 97 to 220
270

Thermal Properties

Latent Heat of Fusion, J/g 540
290
Maximum Temperature: Mechanical, °C 170
930
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 590
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
18
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1070
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
91
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
190
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 20 to 28
19
Strength to Weight: Bending, points 28 to 35
19
Thermal Diffusivity, mm2/s 59
4.9
Thermal Shock Resistance, points 8.8 to 12
19

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18.5 to 20.5
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 0 to 0.65
75.6 to 81.4
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Nickel (Ni), % 0 to 0.15
0
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 11
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0.15 to 0.8
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0