MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. EN 1.4931 Steel

EN AC-43200 aluminum belongs to the aluminum alloys classification, while EN 1.4931 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is EN 1.4931 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 88
240
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.1
17
Fatigue Strength, MPa 67
410
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 190 to 260
810
Tensile Strength: Yield (Proof), MPa 97 to 220
620

Thermal Properties

Latent Heat of Fusion, J/g 540
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
24
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1070
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
130
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
970
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 20 to 28
29
Strength to Weight: Bending, points 28 to 35
25
Thermal Diffusivity, mm2/s 59
6.5
Thermal Shock Resistance, points 8.8 to 12
22

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
0
Carbon (C), % 0
0.2 to 0.26
Chromium (Cr), % 0
11.3 to 12.2
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 0 to 0.65
83.2 to 86.8
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.55
0.5 to 0.8
Molybdenum (Mo), % 0
1.0 to 1.2
Nickel (Ni), % 0 to 0.15
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 9.0 to 11
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0