MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. Grade VDCrV Steel

EN AC-43200 aluminum belongs to the aluminum alloys classification, while grade VDCrV steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is grade VDCrV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 88
520
Elastic (Young's, Tensile) Modulus, GPa 72
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 190 to 260
1730

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
49
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.9
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1070
49

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 20 to 28
61
Strength to Weight: Bending, points 28 to 35
41
Thermal Diffusivity, mm2/s 59
13
Thermal Shock Resistance, points 8.8 to 12
51

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
0
Carbon (C), % 0
0.62 to 0.72
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 0 to 0.35
0 to 0.060
Iron (Fe), % 0 to 0.65
97.8 to 98.8
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.55
0.5 to 0.9
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 9.0 to 11
0.15 to 0.3
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0