MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. Nickel 333

EN AC-43200 aluminum belongs to the aluminum alloys classification, while nickel 333 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.1
34
Fatigue Strength, MPa 67
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 190 to 260
630
Tensile Strength: Yield (Proof), MPa 97 to 220
270

Thermal Properties

Latent Heat of Fusion, J/g 540
320
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 7.8
8.5
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1070
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
170
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 20 to 28
21
Strength to Weight: Bending, points 28 to 35
19
Thermal Diffusivity, mm2/s 59
2.9
Thermal Shock Resistance, points 8.8 to 12
16

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 0 to 0.65
9.3 to 24.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.15
44 to 48
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 9.0 to 11
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0