MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. Nickel 80A

EN AC-43200 aluminum belongs to the aluminum alloys classification, while nickel 80A belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1
22
Fatigue Strength, MPa 67
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 190 to 260
1040
Tensile Strength: Yield (Proof), MPa 97 to 220
710

Thermal Properties

Latent Heat of Fusion, J/g 540
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 600
1360
Melting Onset (Solidus), °C 590
1310
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.6
8.3
Embodied Carbon, kg CO2/kg material 7.8
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1070
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
210
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
1300
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 20 to 28
35
Strength to Weight: Bending, points 28 to 35
27
Thermal Diffusivity, mm2/s 59
2.9
Thermal Shock Resistance, points 8.8 to 12
31

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
0.5 to 1.8
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 0 to 0.65
0 to 3.0
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Nickel (Ni), % 0 to 0.15
69.4 to 79.7
Silicon (Si), % 9.0 to 11
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
1.8 to 2.7
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0