MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. SAE-AISI M7 Steel

EN AC-43200 aluminum belongs to the aluminum alloys classification, while SAE-AISI M7 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is SAE-AISI M7 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 190 to 260
760 to 2210

Thermal Properties

Latent Heat of Fusion, J/g 540
270
Melting Completion (Liquidus), °C 600
1560
Melting Onset (Solidus), °C 590
1510
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 140
28
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 7.8
8.9
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1070
100

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 20 to 28
26 to 76
Strength to Weight: Bending, points 28 to 35
23 to 47
Thermal Diffusivity, mm2/s 59
7.8
Thermal Shock Resistance, points 8.8 to 12
24 to 69

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
0
Carbon (C), % 0
1.0 to 1.1
Chromium (Cr), % 0
3.5 to 4.0
Copper (Cu), % 0 to 0.35
0 to 0.25
Iron (Fe), % 0 to 0.65
79.8 to 83.8
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.55
0.15 to 0.4
Molybdenum (Mo), % 0
8.2 to 9.2
Nickel (Ni), % 0 to 0.15
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 9.0 to 11
0.2 to 0.55
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
1.4 to 2.1
Vanadium (V), % 0
1.8 to 2.3
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0