MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. N08366 Stainless Steel

EN AC-43200 aluminum belongs to the aluminum alloys classification, while N08366 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is N08366 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 88
180
Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.1
34
Fatigue Strength, MPa 67
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 190 to 260
590
Tensile Strength: Yield (Proof), MPa 97 to 220
240

Thermal Properties

Latent Heat of Fusion, J/g 540
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 140
13
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 7.8
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 1070
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
160
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 20 to 28
20
Strength to Weight: Bending, points 28 to 35
19
Thermal Diffusivity, mm2/s 59
3.4
Thermal Shock Resistance, points 8.8 to 12
13

Alloy Composition

Aluminum (Al), % 86.1 to 90.8
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 0 to 0.65
42.4 to 50.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.15
23.5 to 25.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 11
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0