MakeItFrom.com
Menu (ESC)

EN AC-43300 Aluminum vs. A357.0 Aluminum

Both EN AC-43300 aluminum and A357.0 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-43300 aluminum and the bottom bar is A357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91 to 94
100
Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 3.4 to 6.7
3.7
Fatigue Strength, MPa 76 to 77
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 280 to 290
350
Tensile Strength: Yield (Proof), MPa 210 to 230
270

Thermal Properties

Latent Heat of Fusion, J/g 540
500
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
610
Melting Onset (Solidus), °C 590
560
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 140
160
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
40
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.5
2.6
Embodied Carbon, kg CO2/kg material 7.9
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1080
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 17
12
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
520
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 54
53
Strength to Weight: Axial, points 31 to 32
38
Strength to Weight: Bending, points 37 to 38
43
Thermal Diffusivity, mm2/s 59
68
Thermal Shock Resistance, points 13 to 14
17

Alloy Composition

Aluminum (Al), % 88.9 to 90.8
90.8 to 93
Beryllium (Be), % 0
0.040 to 0.070
Copper (Cu), % 0 to 0.050
0 to 0.2
Iron (Fe), % 0 to 0.19
0 to 0.2
Magnesium (Mg), % 0.25 to 0.45
0.4 to 0.7
Manganese (Mn), % 0 to 0.1
0 to 0.1
Silicon (Si), % 9.0 to 10
6.5 to 7.5
Titanium (Ti), % 0 to 0.15
0.040 to 0.2
Zinc (Zn), % 0 to 0.070
0 to 0.1
Residuals, % 0
0 to 0.15