MakeItFrom.com
Menu (ESC)

EN AC-43300 Aluminum vs. AISI 440C Stainless Steel

EN AC-43300 aluminum belongs to the aluminum alloys classification, while AISI 440C stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43300 aluminum and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.4 to 6.7
2.0 to 14
Fatigue Strength, MPa 76 to 77
260 to 840
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 280 to 290
710 to 1970
Tensile Strength: Yield (Proof), MPa 210 to 230
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 540
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 600
1480
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 140
22
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.5
7.7
Embodied Carbon, kg CO2/kg material 7.9
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1080
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 17
39 to 88
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 31 to 32
26 to 71
Strength to Weight: Bending, points 37 to 38
23 to 46
Thermal Diffusivity, mm2/s 59
6.0
Thermal Shock Resistance, points 13 to 14
26 to 71

Alloy Composition

Aluminum (Al), % 88.9 to 90.8
0
Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
78 to 83.1
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 10
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0