MakeItFrom.com
Menu (ESC)

EN AC-43300 Aluminum vs. Austempered Cast Iron

EN AC-43300 aluminum belongs to the aluminum alloys classification, while austempered cast iron belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43300 aluminum and the bottom bar is austempered cast iron.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91 to 94
270 to 490
Elastic (Young's, Tensile) Modulus, GPa 71
180
Elongation at Break, % 3.4 to 6.7
1.1 to 13
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
62 to 69
Tensile Strength: Ultimate (UTS), MPa 280 to 290
860 to 1800
Tensile Strength: Yield (Proof), MPa 210 to 230
560 to 1460

Thermal Properties

Latent Heat of Fusion, J/g 540
280
Melting Completion (Liquidus), °C 600
1380
Melting Onset (Solidus), °C 590
1340
Specific Heat Capacity, J/kg-K 910
490
Thermal Conductivity, W/m-K 140
42
Thermal Expansion, µm/m-K 22
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.9
Density, g/cm3 2.5
7.5
Embodied Carbon, kg CO2/kg material 7.9
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1080
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 17
19 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
880 to 3970
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 31 to 32
32 to 66
Strength to Weight: Bending, points 37 to 38
27 to 44
Thermal Diffusivity, mm2/s 59
11
Thermal Shock Resistance, points 13 to 14
25 to 53

Alloy Composition

Aluminum (Al), % 88.9 to 90.8
0 to 0.050
Arsenic (As), % 0
0 to 0.020
Carbon (C), % 0
3.4 to 3.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.050
0 to 0.8
Iron (Fe), % 0 to 0.19
89.6 to 94
Magnesium (Mg), % 0.25 to 0.45
0 to 0.040
Manganese (Mn), % 0 to 0.1
0.3 to 0.4
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0
0 to 0.040
Selenium (Se), % 0
0 to 0.030
Silicon (Si), % 9.0 to 10
2.3 to 2.7
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0