MakeItFrom.com
Menu (ESC)

EN AC-43300 Aluminum vs. EN 1.4938 Stainless Steel

EN AC-43300 aluminum belongs to the aluminum alloys classification, while EN 1.4938 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43300 aluminum and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.4 to 6.7
16 to 17
Fatigue Strength, MPa 76 to 77
390 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 280 to 290
870 to 1030
Tensile Strength: Yield (Proof), MPa 210 to 230
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 540
270
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 140
30
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.5
7.8
Embodied Carbon, kg CO2/kg material 7.9
3.3
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1080
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 17
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
1050 to 1920
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 31 to 32
31 to 37
Strength to Weight: Bending, points 37 to 38
26 to 29
Thermal Diffusivity, mm2/s 59
8.1
Thermal Shock Resistance, points 13 to 14
30 to 35

Alloy Composition

Aluminum (Al), % 88.9 to 90.8
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
80.5 to 84.8
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0.4 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
2.0 to 3.0
Nitrogen (N), % 0
0.020 to 0.040
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 9.0 to 10
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0