MakeItFrom.com
Menu (ESC)

EN AC-43300 Aluminum vs. Grade 20 Titanium

EN AC-43300 aluminum belongs to the aluminum alloys classification, while grade 20 titanium belongs to the titanium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN AC-43300 aluminum and the bottom bar is grade 20 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 3.4 to 6.7
5.7 to 17
Fatigue Strength, MPa 76 to 77
550 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
47
Tensile Strength: Ultimate (UTS), MPa 280 to 290
900 to 1270
Tensile Strength: Yield (Proof), MPa 210 to 230
850 to 1190

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 170
370
Melting Completion (Liquidus), °C 600
1660
Melting Onset (Solidus), °C 590
1600
Specific Heat Capacity, J/kg-K 910
520
Thermal Expansion, µm/m-K 22
9.6

Otherwise Unclassified Properties

Density, g/cm3 2.5
5.0
Embodied Carbon, kg CO2/kg material 7.9
52
Embodied Energy, MJ/kg 150
860
Embodied Water, L/kg 1080
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 17
71 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
2940 to 5760
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
33
Strength to Weight: Axial, points 31 to 32
50 to 70
Strength to Weight: Bending, points 37 to 38
41 to 52
Thermal Shock Resistance, points 13 to 14
55 to 77

Alloy Composition

Aluminum (Al), % 88.9 to 90.8
3.0 to 4.0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
5.5 to 6.5
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 0 to 0.19
0 to 0.3
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 9.0 to 10
0
Titanium (Ti), % 0 to 0.15
71 to 77
Vanadium (V), % 0
7.5 to 8.5
Zinc (Zn), % 0 to 0.070
0
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants