MakeItFrom.com
Menu (ESC)

EN AC-43300 Aluminum vs. S44660 Stainless Steel

EN AC-43300 aluminum belongs to the aluminum alloys classification, while S44660 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43300 aluminum and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91 to 94
210
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 3.4 to 6.7
20
Fatigue Strength, MPa 76 to 77
330
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 280 to 290
660
Tensile Strength: Yield (Proof), MPa 210 to 230
510

Thermal Properties

Latent Heat of Fusion, J/g 540
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
21
Density, g/cm3 2.5
7.7
Embodied Carbon, kg CO2/kg material 7.9
4.3
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1080
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 17
120
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
640
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 31 to 32
24
Strength to Weight: Bending, points 37 to 38
22
Thermal Diffusivity, mm2/s 59
4.5
Thermal Shock Resistance, points 13 to 14
21

Alloy Composition

Aluminum (Al), % 88.9 to 90.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
60.4 to 71
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 10
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0.2 to 1.0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0