MakeItFrom.com
Menu (ESC)

EN AC-43400 Aluminum vs. 380.0 Aluminum

Both EN AC-43400 aluminum and 380.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-43400 aluminum and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
80
Elastic (Young's, Tensile) Modulus, GPa 72
74
Elongation at Break, % 1.1
3.0
Fatigue Strength, MPa 110
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 270
320
Tensile Strength: Yield (Proof), MPa 160
160

Thermal Properties

Latent Heat of Fusion, J/g 540
510
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
590
Melting Onset (Solidus), °C 590
540
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 140
100
Thermal Expansion, µm/m-K 22
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
27
Electrical Conductivity: Equal Weight (Specific), % IACS 110
83

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 7.8
7.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1070
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 180
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
48
Strength to Weight: Axial, points 29
31
Strength to Weight: Bending, points 36
36
Thermal Diffusivity, mm2/s 59
40
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 86 to 90.8
79.6 to 89.5
Copper (Cu), % 0 to 0.1
3.0 to 4.0
Iron (Fe), % 0 to 1.0
0 to 2.0
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.2 to 0.5
0 to 0.1
Manganese (Mn), % 0 to 0.55
0 to 0.5
Nickel (Ni), % 0 to 0.15
0 to 0.5
Silicon (Si), % 9.0 to 11
7.5 to 9.5
Tin (Sn), % 0 to 0.050
0 to 0.35
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0 to 3.0
Residuals, % 0
0 to 0.5