MakeItFrom.com
Menu (ESC)

EN AC-43400 Aluminum vs. 5082 Aluminum

Both EN AC-43400 aluminum and 5082 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43400 aluminum and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
67
Elongation at Break, % 1.1
1.1
Fatigue Strength, MPa 110
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 270
380 to 400
Tensile Strength: Yield (Proof), MPa 160
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 590
560
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
32
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 180
670 to 870
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
51
Strength to Weight: Axial, points 29
39 to 41
Strength to Weight: Bending, points 36
43 to 45
Thermal Diffusivity, mm2/s 59
54
Thermal Shock Resistance, points 12
17 to 18

Alloy Composition

Aluminum (Al), % 86 to 90.8
93.5 to 96
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0 to 0.1
0 to 0.15
Iron (Fe), % 0 to 1.0
0 to 0.35
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.2 to 0.5
4.0 to 5.0
Manganese (Mn), % 0 to 0.55
0 to 0.15
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 9.0 to 11
0 to 0.2
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.15
0 to 0.25
Residuals, % 0
0 to 0.15