MakeItFrom.com
Menu (ESC)

EN AC-43400 Aluminum vs. 713.0 Aluminum

Both EN AC-43400 aluminum and 713.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43400 aluminum and the bottom bar is 713.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
74 to 75
Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 1.1
3.9 to 4.3
Fatigue Strength, MPa 110
63 to 120
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 270
240 to 260
Tensile Strength: Yield (Proof), MPa 160
170

Thermal Properties

Latent Heat of Fusion, J/g 540
370
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 600
630
Melting Onset (Solidus), °C 590
610
Specific Heat Capacity, J/kg-K 900
860
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
35
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 7.8
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
8.7 to 9.9
Resilience: Unit (Modulus of Resilience), kJ/m3 180
210 to 220
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
45
Strength to Weight: Axial, points 29
22 to 23
Strength to Weight: Bending, points 36
28 to 29
Thermal Diffusivity, mm2/s 59
57
Thermal Shock Resistance, points 12
10 to 11

Alloy Composition

Aluminum (Al), % 86 to 90.8
87.6 to 92.4
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 0 to 0.1
0.4 to 1.0
Iron (Fe), % 0 to 1.0
0 to 1.1
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.2 to 0.5
0.2 to 0.5
Manganese (Mn), % 0 to 0.55
0 to 0.6
Nickel (Ni), % 0 to 0.15
0 to 0.15
Silicon (Si), % 9.0 to 11
0 to 0.25
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.15
7.0 to 8.0
Residuals, % 0
0 to 0.25