MakeItFrom.com
Menu (ESC)

EN AC-43400 Aluminum vs. 7178 Aluminum

Both EN AC-43400 aluminum and 7178 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43400 aluminum and the bottom bar is 7178 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 1.1
4.5 to 12
Fatigue Strength, MPa 110
120 to 210
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 270
240 to 640
Tensile Strength: Yield (Proof), MPa 160
120 to 560

Thermal Properties

Latent Heat of Fusion, J/g 540
370
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 600
630
Melting Onset (Solidus), °C 590
480
Specific Heat Capacity, J/kg-K 900
860
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
31
Electrical Conductivity: Equal Weight (Specific), % IACS 110
91

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
24 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 180
110 to 2220
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
45
Strength to Weight: Axial, points 29
21 to 58
Strength to Weight: Bending, points 36
28 to 54
Thermal Diffusivity, mm2/s 59
47
Thermal Shock Resistance, points 12
10 to 28

Alloy Composition

Aluminum (Al), % 86 to 90.8
85.4 to 89.5
Chromium (Cr), % 0
0.18 to 0.28
Copper (Cu), % 0 to 0.1
1.6 to 2.4
Iron (Fe), % 0 to 1.0
0 to 0.5
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.2 to 0.5
2.4 to 3.1
Manganese (Mn), % 0 to 0.55
0 to 0.3
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 9.0 to 11
0 to 0.4
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.15
6.3 to 7.3
Residuals, % 0
0 to 0.15