MakeItFrom.com
Menu (ESC)

EN AC-43400 Aluminum vs. CR013A Copper

EN AC-43400 aluminum belongs to the aluminum alloys classification, while CR013A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43400 aluminum and the bottom bar is CR013A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 1.1
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 270
230
Tensile Strength: Yield (Proof), MPa 160
140

Thermal Properties

Latent Heat of Fusion, J/g 540
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 600
1090
Melting Onset (Solidus), °C 590
1040
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 140
390
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
100
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 2.6
9.0
Embodied Carbon, kg CO2/kg material 7.8
2.7
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1070
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
31
Resilience: Unit (Modulus of Resilience), kJ/m3 180
83
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 54
18
Strength to Weight: Axial, points 29
7.1
Strength to Weight: Bending, points 36
9.3
Thermal Diffusivity, mm2/s 59
110
Thermal Shock Resistance, points 12
8.1

Alloy Composition

Aluminum (Al), % 86 to 90.8
0
Bismuth (Bi), % 0
0 to 0.00050
Copper (Cu), % 0 to 0.1
99.81 to 99.92
Iron (Fe), % 0 to 1.0
0
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.15
0
Oxygen (O), % 0
0 to 0.040
Silicon (Si), % 9.0 to 11
0
Silver (Ag), % 0
0.080 to 0.12
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0