MakeItFrom.com
Menu (ESC)

EN AC-43400 Aluminum vs. C63800 Bronze

EN AC-43400 aluminum belongs to the aluminum alloys classification, while C63800 bronze belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43400 aluminum and the bottom bar is C63800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 1.1
7.9 to 41
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 270
460 to 1010

Thermal Properties

Latent Heat of Fusion, J/g 540
240
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 600
1030
Melting Onset (Solidus), °C 590
1000
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 140
40
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
10
Electrical Conductivity: Equal Weight (Specific), % IACS 110
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.6
8.6
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1070
330

Common Calculations

Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 54
19
Strength to Weight: Axial, points 29
15 to 33
Strength to Weight: Bending, points 36
15 to 26
Thermal Diffusivity, mm2/s 59
11
Thermal Shock Resistance, points 12
17 to 36

Alloy Composition

Aluminum (Al), % 86 to 90.8
2.5 to 3.1
Cobalt (Co), % 0
0.25 to 0.55
Copper (Cu), % 0 to 0.1
92.4 to 95.8
Iron (Fe), % 0 to 1.0
0 to 0.2
Lead (Pb), % 0 to 0.15
0 to 0.050
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.55
0 to 0.1
Nickel (Ni), % 0 to 0.15
0 to 0.2
Silicon (Si), % 9.0 to 11
1.5 to 2.1
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0 to 0.8
Residuals, % 0
0 to 0.5