MakeItFrom.com
Menu (ESC)

EN AC-43400 Aluminum vs. C64200 Bronze

EN AC-43400 aluminum belongs to the aluminum alloys classification, while C64200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43400 aluminum and the bottom bar is C64200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 1.1
14 to 35
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 270
540 to 640
Tensile Strength: Yield (Proof), MPa 160
230 to 320

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 600
1000
Melting Onset (Solidus), °C 590
980
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 140
45
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.6
8.3
Embodied Carbon, kg CO2/kg material 7.8
3.0
Embodied Energy, MJ/kg 150
50
Embodied Water, L/kg 1070
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
73 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 180
240 to 470
Stiffness to Weight: Axial, points 15
7.5
Stiffness to Weight: Bending, points 54
19
Strength to Weight: Axial, points 29
18 to 21
Strength to Weight: Bending, points 36
18 to 20
Thermal Diffusivity, mm2/s 59
13
Thermal Shock Resistance, points 12
20 to 23

Alloy Composition

Aluminum (Al), % 86 to 90.8
6.3 to 7.6
Arsenic (As), % 0
0 to 0.15
Copper (Cu), % 0 to 0.1
88.2 to 92.2
Iron (Fe), % 0 to 1.0
0 to 0.3
Lead (Pb), % 0 to 0.15
0 to 0.050
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.55
0 to 0.1
Nickel (Ni), % 0 to 0.15
0 to 0.25
Silicon (Si), % 9.0 to 11
1.5 to 2.2
Tin (Sn), % 0 to 0.050
0 to 0.2
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0 to 0.5
Residuals, % 0
0 to 0.5