MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. 2018 Aluminum

Both EN AC-43500 aluminum and 2018 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is 2018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 91
120
Elastic (Young's, Tensile) Modulus, GPa 72
73
Elongation at Break, % 4.5 to 13
9.6
Fatigue Strength, MPa 62 to 100
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 220 to 300
420
Tensile Strength: Yield (Proof), MPa 140 to 170
310

Thermal Properties

Latent Heat of Fusion, J/g 550
390
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 590
510
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 22
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
40
Electrical Conductivity: Equal Weight (Specific), % IACS 130
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 7.8
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
37
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
670
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
45
Strength to Weight: Axial, points 24 to 33
38
Strength to Weight: Bending, points 32 to 39
41
Thermal Diffusivity, mm2/s 60
57
Thermal Shock Resistance, points 10 to 14
19

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
89.7 to 94.4
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.050
3.5 to 4.5
Iron (Fe), % 0 to 0.25
0 to 1.0
Magnesium (Mg), % 0.1 to 0.6
0.45 to 0.9
Manganese (Mn), % 0.4 to 0.8
0 to 0.2
Nickel (Ni), % 0
1.7 to 2.3
Silicon (Si), % 9.0 to 11.5
0 to 0.9
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0 to 0.25
Residuals, % 0
0 to 0.15