MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. 5059 Aluminum

Both EN AC-43500 aluminum and 5059 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is 5059 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 4.5 to 13
11 to 25
Fatigue Strength, MPa 62 to 100
170 to 240
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 220 to 300
350 to 410
Tensile Strength: Yield (Proof), MPa 140 to 170
170 to 300

Thermal Properties

Latent Heat of Fusion, J/g 550
390
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 590
510
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
110
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
29
Electrical Conductivity: Equal Weight (Specific), % IACS 130
95

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
9.1
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1070
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
220 to 650
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
50
Strength to Weight: Axial, points 24 to 33
36 to 42
Strength to Weight: Bending, points 32 to 39
41 to 45
Thermal Diffusivity, mm2/s 60
44
Thermal Shock Resistance, points 10 to 14
16 to 18

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
89.9 to 94
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0 to 0.050
0 to 0.25
Iron (Fe), % 0 to 0.25
0 to 0.5
Magnesium (Mg), % 0.1 to 0.6
5.0 to 6.0
Manganese (Mn), % 0.4 to 0.8
0.6 to 1.2
Silicon (Si), % 9.0 to 11.5
0 to 0.45
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.070
0.4 to 0.9
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15