MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. 5182 Aluminum

Both EN AC-43500 aluminum and 5182 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is 5182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
68
Elongation at Break, % 4.5 to 13
1.1 to 12
Fatigue Strength, MPa 62 to 100
100 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 220 to 300
280 to 420
Tensile Strength: Yield (Proof), MPa 140 to 170
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 550
390
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 590
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
28
Electrical Conductivity: Equal Weight (Specific), % IACS 130
94

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
2.6 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
120 to 950
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
51
Strength to Weight: Axial, points 24 to 33
29 to 44
Strength to Weight: Bending, points 32 to 39
36 to 47
Thermal Diffusivity, mm2/s 60
53
Thermal Shock Resistance, points 10 to 14
12 to 19

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
93.2 to 95.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.050
0 to 0.15
Iron (Fe), % 0 to 0.25
0 to 0.35
Magnesium (Mg), % 0.1 to 0.6
4.0 to 5.0
Manganese (Mn), % 0.4 to 0.8
0.2 to 0.5
Silicon (Si), % 9.0 to 11.5
0 to 0.2
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.070
0 to 0.25
Residuals, % 0
0 to 0.15