MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. 5657 Aluminum

Both EN AC-43500 aluminum and 5657 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is 5657 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 91
40 to 50
Elastic (Young's, Tensile) Modulus, GPa 72
68
Elongation at Break, % 4.5 to 13
6.6 to 15
Fatigue Strength, MPa 62 to 100
74 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 220 to 300
150 to 200
Tensile Strength: Yield (Proof), MPa 140 to 170
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 550
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 600
660
Melting Onset (Solidus), °C 590
640
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
210
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
54
Electrical Conductivity: Equal Weight (Specific), % IACS 130
180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.4
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1070
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
9.7 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
140 to 200
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
50
Strength to Weight: Axial, points 24 to 33
15 to 20
Strength to Weight: Bending, points 32 to 39
23 to 28
Thermal Diffusivity, mm2/s 60
84
Thermal Shock Resistance, points 10 to 14
6.7 to 8.6

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
98.5 to 99.4
Copper (Cu), % 0 to 0.050
0 to 0.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.25
0 to 0.1
Magnesium (Mg), % 0.1 to 0.6
0.6 to 1.0
Manganese (Mn), % 0.4 to 0.8
0 to 0.030
Silicon (Si), % 9.0 to 11.5
0 to 0.080
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.070
0 to 0.050
Residuals, % 0
0 to 0.050