MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. 6151 Aluminum

Both EN AC-43500 aluminum and 6151 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is 6151 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 4.5 to 13
1.1 to 5.7
Fatigue Strength, MPa 62 to 100
80 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 220 to 300
330 to 340
Tensile Strength: Yield (Proof), MPa 140 to 170
270 to 280

Thermal Properties

Latent Heat of Fusion, J/g 550
410
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 590
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
170
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
45
Electrical Conductivity: Equal Weight (Specific), % IACS 130
150

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
3.5 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
520 to 580
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
50
Strength to Weight: Axial, points 24 to 33
34
Strength to Weight: Bending, points 32 to 39
39
Thermal Diffusivity, mm2/s 60
70
Thermal Shock Resistance, points 10 to 14
15

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
95.6 to 98.8
Chromium (Cr), % 0
0.15 to 0.35
Copper (Cu), % 0 to 0.050
0 to 0.35
Iron (Fe), % 0 to 0.25
0 to 1.0
Magnesium (Mg), % 0.1 to 0.6
0.45 to 0.8
Manganese (Mn), % 0.4 to 0.8
0 to 0.2
Silicon (Si), % 9.0 to 11.5
0.6 to 1.2
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 0 to 0.070
0 to 0.25
Residuals, % 0
0 to 0.15